\(\int \frac {x^3 (A+B x+C x^2)}{(a+b x^2+c x^4)^2} \, dx\) [30]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 347 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {B x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {a (2 A c-b C)+\left (A b c-b^2 C+2 a c C\right ) x^2}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {B \left (b-\frac {b^2+4 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {B \left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {(A b-2 a C) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

[Out]

1/2*B*x*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*(a*(2*A*c-C*b)+(A*b*c+2*C*a*c-C*b^2)*x^2)/c/(-4*a*c+b^2)/
(c*x^4+b*x^2+a)-(A*b-2*C*a)*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)+1/4*B*arctan(x*2^(1/2)*
c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b+(-4*a*c-b^2)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)*2^(1/2)/c^(1/2)/(b-(-4*
a*c+b^2)^(1/2))^(1/2)+1/4*B*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(b^2+4*a*c+b*(-4*a*c+b^2)^(
1/2))/(-4*a*c+b^2)^(3/2)*2^(1/2)/c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {1676, 1265, 791, 632, 212, 12, 1134, 1180, 211} \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {(A b-2 a C) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {x^2 \left (2 a c C+A b c+b^2 (-C)\right )+a (2 A c-b C)}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {B \left (b-\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {B \left (b \sqrt {b^2-4 a c}+4 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {B x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \]

[In]

Int[(x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4)^2,x]

[Out]

(B*x*(2*a + b*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (a*(2*A*c - b*C) + (A*b*c - b^2*C + 2*a*c*C)*x^2)/
(2*c*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (B*(b - (b^2 + 4*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/
Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (B*(b^2 + 4*a*c
+ b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*
c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - ((A*b - 2*a*C)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)
^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 791

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(2
*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (b^2*e*g - b*c*(e*f + d*g) + 2*c*(c*d*f - a*e*g))*x))*((a + b*x + c*x^2
)^(p + 1)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*
p + 3))/(c*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
 NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 1134

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-d^3)*(d*x)^(m - 3)*(2*a
+ b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 1)*(b^2 - 4*a*c))), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int
[(d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1265

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 1676

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
 k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B x^4}{\left (a+b x^2+c x^4\right )^2} \, dx+\int \frac {x^3 \left (A+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {x (A+C x)}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right )+B \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {B x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {a (2 A c-b C)+\left (A b c-b^2 C+2 a c C\right ) x^2}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {B \int \frac {2 a-b x^2}{a+b x^2+c x^4} \, dx}{2 \left (b^2-4 a c\right )}+\frac {(A b-2 a C) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{2 \left (b^2-4 a c\right )} \\ & = \frac {B x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {a (2 A c-b C)+\left (A b c-b^2 C+2 a c C\right ) x^2}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (B \left (b^2+4 a c-b \sqrt {b^2-4 a c}\right )\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 \left (b^2-4 a c\right )^{3/2}}+\frac {\left (B \left (b^2+4 a c+b \sqrt {b^2-4 a c}\right )\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 \left (b^2-4 a c\right )^{3/2}}-\frac {(A b-2 a C) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{b^2-4 a c} \\ & = \frac {B x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {a (2 A c-b C)+\left (A b c-b^2 C+2 a c C\right ) x^2}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {B \left (b^2+4 a c-b \sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {B \left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {(A b-2 a C) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 358, normalized size of antiderivative = 1.03 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (-\frac {2 \left (b x^2 (A c-b C+B c x)+a (2 A c-b C+2 c x (B+C x))\right )}{c \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} B \left (-b^2-4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} B \left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 (A b-2 a C) \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {2 (A b-2 a C) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \]

[In]

Integrate[(x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4)^2,x]

[Out]

((-2*(b*x^2*(A*c - b*C + B*c*x) + a*(2*A*c - b*C + 2*c*x*(B + C*x))))/(c*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)) +
 (Sqrt[2]*B*(-b^2 - 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqr
t[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*B*(b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[
(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) +
(2*(A*b - 2*a*C)*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) - (2*(A*b - 2*a*C)*Log[b + Sqrt[b^
2 - 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/4

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.11 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.61

method result size
risch \(\frac {-\frac {b B \,x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {\left (A b c +2 a c C -b^{2} C \right ) x^{2}}{2 c \left (4 a c -b^{2}\right )}-\frac {x B a}{4 a c -b^{2}}-\frac {a \left (2 A c -C b \right )}{2 \left (4 a c -b^{2}\right ) c}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {\textit {\_R}^{2} B b}{4 a c -b^{2}}-\frac {2 \left (A b -2 C a \right ) \textit {\_R}}{4 a c -b^{2}}+\frac {2 B a}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{4}\) \(213\)
default \(\frac {-\frac {b B \,x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {\left (A b c +2 a c C -b^{2} C \right ) x^{2}}{2 c \left (4 a c -b^{2}\right )}-\frac {x B a}{4 a c -b^{2}}-\frac {a \left (2 A c -C b \right )}{2 \left (4 a c -b^{2}\right ) c}}{c \,x^{4}+b \,x^{2}+a}+\frac {2 c \left (\frac {\frac {\left (-4 A b c \sqrt {-4 a c +b^{2}}+8 C \sqrt {-4 a c +b^{2}}\, a c \right ) \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4 c}+\frac {\left (4 B a c \sqrt {-4 a c +b^{2}}+B \,b^{2} \sqrt {-4 a c +b^{2}}-4 B a b c +B \,b^{3}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 c \left (4 a c -b^{2}\right )}+\frac {-\frac {\left (-4 A b c \sqrt {-4 a c +b^{2}}+8 C \sqrt {-4 a c +b^{2}}\, a c \right ) \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4 c}+\frac {\left (4 B a c \sqrt {-4 a c +b^{2}}+B \,b^{2} \sqrt {-4 a c +b^{2}}+4 B a b c -B \,b^{3}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 c \left (4 a c -b^{2}\right )}\right )}{4 a c -b^{2}}\) \(458\)

[In]

int(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

(-1/2/(4*a*c-b^2)*b*B*x^3-1/2*(A*b*c+2*C*a*c-C*b^2)/c/(4*a*c-b^2)*x^2-1/(4*a*c-b^2)*x*B*a-1/2*a*(2*A*c-C*b)/(4
*a*c-b^2)/c)/(c*x^4+b*x^2+a)+1/4*sum((-1/(4*a*c-b^2)*_R^2*B*b-2*(A*b-2*C*a)/(4*a*c-b^2)*_R+2/(4*a*c-b^2)*B*a)/
(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [F(-1)]

Timed out. \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(x**3*(C*x**2+B*x+A)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {{\left (C x^{2} + B x + A\right )} x^{3}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

1/2*(B*b*c*x^3 + 2*B*a*c*x - C*a*b + 2*A*a*c - (C*b^2 - (2*C*a + A*b)*c)*x^2)/((b^2*c^2 - 4*a*c^3)*x^4 + a*b^2
*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2) + 1/2*integrate((B*b*x^2 - 2*B*a - 2*(2*C*a - A*b)*x)/(c*x^4 + b*x^2
 + a), x)/(b^2 - 4*a*c)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3227 vs. \(2 (296) = 592\).

Time = 1.22 (sec) , antiderivative size = 3227, normalized size of antiderivative = 9.30 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate(x^3*(C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

1/2*(B*b*c*x^3 - C*b^2*x^2 + 2*C*a*c*x^2 + A*b*c*x^2 + 2*B*a*c*x - C*a*b + 2*A*a*c)/((c*x^4 + b*x^2 + a)*(b^2*
c - 4*a*c^2)) + 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 +
 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq
rt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b
*c^2)*(b^2 - 4*a*c)^2*B - 4*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 -
 4*a*c)*c)*a^2*b^2*c^2 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 - 2*a*b^4*c^2 + 16*sqrt(2)*sqrt(b
*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^3 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^3 + sqrt(2)*sqrt(b*c + s
qrt(b^2 - 4*a*c)*c)*a*b^2*c^3 + 16*a^2*b^2*c^3 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^4 - 32*a^3*c^
4 + 2*(b^2 - 4*a*c)*a*b^2*c^2 - 8*(b^2 - 4*a*c)*a^2*c^3)*B*abs(b^2 - 4*a*c) - (2*b^7*c^2 - 8*a*b^5*c^3 - 32*a^
2*b^3*c^4 + 128*a^3*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^7 + 4*sqrt(2)*sqrt(b^2
 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c
)*b^6*c + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c^2 - 64*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*
c^3 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 2*(b^2 - 4*a*c)*b^5*c^2 + 32*(b^2 - 4*a*c)*a^2*b*c^4)*B)*arctan(2*
sqrt(1/2)*x/sqrt((b^3 - 4*a*b*c + sqrt((b^3 - 4*a*b*c)^2 - 4*(a*b^2 - 4*a^2*c)*(b^2*c - 4*a*c^2)))/(b^2*c - 4*
a*c^2)))/((a*b^6*c - 12*a^2*b^4*c^2 - 2*a*b^5*c^2 + 48*a^3*b^2*c^3 + 16*a^2*b^3*c^3 + a*b^4*c^3 - 64*a^4*c^4 -
 32*a^3*b*c^4 - 8*a^2*b^2*c^4 + 16*a^3*c^5)*abs(b^2 - 4*a*c)*abs(c)) - 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*
sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*
c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*(b^2 - 4*a*c)^2*B + 4*(sqrt(2)*sqrt(b*c - sqrt(b^
2 - 4*a*c)*c)*a*b^4*c - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^2 - 2*sqrt(2)*sqrt(b*c - sqrt(b^2
- 4*a*c)*c)*a*b^3*c^2 + 2*a*b^4*c^2 + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^3 + 8*sqrt(2)*sqrt(b*c
- sqrt(b^2 - 4*a*c)*c)*a^2*b*c^3 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^3 - 16*a^2*b^2*c^3 - 4*sqrt
(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^4 + 32*a^3*c^4 - 2*(b^2 - 4*a*c)*a*b^2*c^2 + 8*(b^2 - 4*a*c)*a^2*c^3
)*B*abs(b^2 - 4*a*c) - (2*b^7*c^2 - 8*a*b^5*c^3 - 32*a^2*b^3*c^4 + 128*a^3*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^7 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*s
qrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^6*c + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(
b^2 - 4*a*c)*c)*a^2*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5*c^2 - 64*sqrt(2)*s
qrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2
- 4*a*c)*c)*a^2*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 2*(b^2 - 4*
a*c)*b^5*c^2 + 32*(b^2 - 4*a*c)*a^2*b*c^4)*B)*arctan(2*sqrt(1/2)*x/sqrt((b^3 - 4*a*b*c - sqrt((b^3 - 4*a*b*c)^
2 - 4*(a*b^2 - 4*a^2*c)*(b^2*c - 4*a*c^2)))/(b^2*c - 4*a*c^2)))/((a*b^6*c - 12*a^2*b^4*c^2 - 2*a*b^5*c^2 + 48*
a^3*b^2*c^3 + 16*a^2*b^3*c^3 + a*b^4*c^3 - 64*a^4*c^4 - 32*a^3*b*c^4 - 8*a^2*b^2*c^4 + 16*a^3*c^5)*abs(b^2 - 4
*a*c)*abs(c)) + 1/8*((b^4*c - 4*a*b^2*c^2 - 2*b^3*c^2 + b^2*c^3 - (b^3*c - 4*a*b*c^2 - 2*b^2*c^2 + b*c^3)*sqrt
(b^2 - 4*a*c))*A*abs(b^2 - 4*a*c) - 2*(a*b^3*c - 4*a^2*b*c^2 - 2*a*b^2*c^2 + a*b*c^3 + (a*b^2*c - 4*a^2*c^2 -
2*a*b*c^2 + a*c^3)*sqrt(b^2 - 4*a*c))*C*abs(b^2 - 4*a*c) - (b^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 +
 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4 + (b^5*c - 4*a*b^3*c^2 - 2*b^4*c^2 + b^3*c^3)*sqrt(b^2 - 4*a*c))*A + 2*(a
*b^5*c - 8*a^2*b^3*c^2 - 2*a*b^4*c^2 + 16*a^3*b*c^3 + 8*a^2*b^2*c^3 + a*b^3*c^3 - 4*a^2*b*c^4 + (a*b^4*c - 4*a
^2*b^2*c^2 - 2*a*b^3*c^2 + a*b^2*c^3)*sqrt(b^2 - 4*a*c))*C)*log(x^2 + 1/2*(b^3 - 4*a*b*c + sqrt((b^3 - 4*a*b*c
)^2 - 4*(a*b^2 - 4*a^2*c)*(b^2*c - 4*a*c^2)))/(b^2*c - 4*a*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^
2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*abs(b^2 - 4*a*c)) + 1/8*((b^4*c - 4*a*b^2*c^2 - 2*b^3*c^2 + b^2*c
^3 + (b^3*c - 4*a*b*c^2 - 2*b^2*c^2 + b*c^3)*sqrt(b^2 - 4*a*c))*A*abs(b^2 - 4*a*c) - 2*(a*b^3*c - 4*a^2*b*c^2
- 2*a*b^2*c^2 + a*b*c^3 - (a*b^2*c - 4*a^2*c^2 - 2*a*b*c^2 + a*c^3)*sqrt(b^2 - 4*a*c))*C*abs(b^2 - 4*a*c) - (b
^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4 + (b^5*c - 4*a*b^3*c^2 -
 2*b^4*c^2 + b^3*c^3)*sqrt(b^2 - 4*a*c))*A + 2*(a*b^5*c - 8*a^2*b^3*c^2 - 2*a*b^4*c^2 + 16*a^3*b*c^3 + 8*a^2*b
^2*c^3 + a*b^3*c^3 - 4*a^2*b*c^4 - (a*b^4*c - 4*a^2*b^2*c^2 - 2*a*b^3*c^2 + a*b^2*c^3)*sqrt(b^2 - 4*a*c))*C)*l
og(x^2 + 1/2*(b^3 - 4*a*b*c - sqrt((b^3 - 4*a*b*c)^2 - 4*(a*b^2 - 4*a^2*c)*(b^2*c - 4*a*c^2)))/(b^2*c - 4*a*c^
2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*abs(b^2 - 4*a*c)
)

Mupad [B] (verification not implemented)

Time = 8.49 (sec) , antiderivative size = 3278, normalized size of antiderivative = 9.45 \[ \int \frac {x^3 \left (A+B x+C x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

int((x^3*(A + B*x + C*x^2))/(a + b*x^2 + c*x^4)^2,x)

[Out]

symsum(log(root(1572864*a^5*b^2*c^6*z^4 - 983040*a^4*b^4*c^5*z^4 + 327680*a^3*b^6*c^4*z^4 - 61440*a^2*b^8*c^3*
z^4 + 6144*a*b^10*c^2*z^4 - 1048576*a^6*c^7*z^4 - 256*b^12*c*z^4 + 32768*A*C*a^4*b*c^4*z^2 - 512*A*C*a*b^7*c*z
^2 - 24576*A*C*a^3*b^3*c^3*z^2 + 6144*A*C*a^2*b^5*c^2*z^2 + 512*C^2*a^2*b^6*c*z^2 + 12288*B^2*a^4*b*c^4*z^2 -
1536*A^2*a*b^6*c^2*z^2 + 24576*C^2*a^4*b^2*c^3*z^2 - 6144*C^2*a^3*b^4*c^2*z^2 - 8192*B^2*a^3*b^3*c^3*z^2 + 153
6*B^2*a^2*b^5*c^2*z^2 - 8192*A^2*a^3*b^2*c^4*z^2 + 6144*A^2*a^2*b^4*c^3*z^2 + 128*A^2*b^8*c*z^2 - 32768*C^2*a^
5*c^4*z^2 - 16*B^2*b^9*z^2 + 384*B^2*C*a^2*b^4*c*z - 1024*A*B^2*a^3*b*c^3*z - 192*A*B^2*a*b^5*c*z - 1536*B^2*C
*a^3*b^2*c^2*z + 768*A*B^2*a^2*b^3*c^2*z - 32*B^2*C*a*b^6*z + 2048*B^2*C*a^4*c^3*z + 16*A*B^2*b^7*z + 192*A*B^
2*C*a^2*b^2*c + 512*A*C^3*a^3*b*c + 128*A^3*C*a*b^3*c + 16*A*B^2*C*a*b^4 - 384*A^2*C^2*a^2*b^2*c - 192*B^2*C^2
*a^3*b*c - 48*A^2*B^2*a*b^3*c - 24*B^4*a^2*b^2*c - 16*B^2*C^2*a^2*b^3 - 16*B^4*a^3*c^2 - 4*A^2*B^2*b^5 - 256*C
^4*a^4*c - 16*A^4*b^4*c - 9*B^4*a*b^4, z, k)*((256*A*B*a^2*b^2*c^3 + 128*B*C*a^2*b^3*c^2 - 64*A*B*a*b^4*c^2 -
512*B*C*a^3*b*c^3)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) - root(1572864*a^5*b^2*c^6*z^4 - 98304
0*a^4*b^4*c^5*z^4 + 327680*a^3*b^6*c^4*z^4 - 61440*a^2*b^8*c^3*z^4 + 6144*a*b^10*c^2*z^4 - 1048576*a^6*c^7*z^4
 - 256*b^12*c*z^4 + 32768*A*C*a^4*b*c^4*z^2 - 512*A*C*a*b^7*c*z^2 - 24576*A*C*a^3*b^3*c^3*z^2 + 6144*A*C*a^2*b
^5*c^2*z^2 + 512*C^2*a^2*b^6*c*z^2 + 12288*B^2*a^4*b*c^4*z^2 - 1536*A^2*a*b^6*c^2*z^2 + 24576*C^2*a^4*b^2*c^3*
z^2 - 6144*C^2*a^3*b^4*c^2*z^2 - 8192*B^2*a^3*b^3*c^3*z^2 + 1536*B^2*a^2*b^5*c^2*z^2 - 8192*A^2*a^3*b^2*c^4*z^
2 + 6144*A^2*a^2*b^4*c^3*z^2 + 128*A^2*b^8*c*z^2 - 32768*C^2*a^5*c^4*z^2 - 16*B^2*b^9*z^2 + 384*B^2*C*a^2*b^4*
c*z - 1024*A*B^2*a^3*b*c^3*z - 192*A*B^2*a*b^5*c*z - 1536*B^2*C*a^3*b^2*c^2*z + 768*A*B^2*a^2*b^3*c^2*z - 32*B
^2*C*a*b^6*z + 2048*B^2*C*a^4*c^3*z + 16*A*B^2*b^7*z + 192*A*B^2*C*a^2*b^2*c + 512*A*C^3*a^3*b*c + 128*A^3*C*a
*b^3*c + 16*A*B^2*C*a*b^4 - 384*A^2*C^2*a^2*b^2*c - 192*B^2*C^2*a^3*b*c - 48*A^2*B^2*a*b^3*c - 24*B^4*a^2*b^2*
c - 16*B^2*C^2*a^2*b^3 - 16*B^4*a^3*c^2 - 4*A^2*B^2*b^5 - 256*C^4*a^4*c - 16*A^4*b^4*c - 9*B^4*a*b^4, z, k)*((
x*(16*A*b^7*c^2 + 2048*C*a^4*c^5 - 192*A*a*b^5*c^3 - 1024*A*a^3*b*c^5 - 32*C*a*b^6*c^2 + 768*A*a^2*b^3*c^4 + 3
84*C*a^2*b^4*c^3 - 1536*C*a^3*b^2*c^4))/(4*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) - (2048*B*a^4*c^5
 - 32*B*a*b^6*c^2 + 384*B*a^2*b^4*c^3 - 1536*B*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c
)) + (root(1572864*a^5*b^2*c^6*z^4 - 983040*a^4*b^4*c^5*z^4 + 327680*a^3*b^6*c^4*z^4 - 61440*a^2*b^8*c^3*z^4 +
 6144*a*b^10*c^2*z^4 - 1048576*a^6*c^7*z^4 - 256*b^12*c*z^4 + 32768*A*C*a^4*b*c^4*z^2 - 512*A*C*a*b^7*c*z^2 -
24576*A*C*a^3*b^3*c^3*z^2 + 6144*A*C*a^2*b^5*c^2*z^2 + 512*C^2*a^2*b^6*c*z^2 + 12288*B^2*a^4*b*c^4*z^2 - 1536*
A^2*a*b^6*c^2*z^2 + 24576*C^2*a^4*b^2*c^3*z^2 - 6144*C^2*a^3*b^4*c^2*z^2 - 8192*B^2*a^3*b^3*c^3*z^2 + 1536*B^2
*a^2*b^5*c^2*z^2 - 8192*A^2*a^3*b^2*c^4*z^2 + 6144*A^2*a^2*b^4*c^3*z^2 + 128*A^2*b^8*c*z^2 - 32768*C^2*a^5*c^4
*z^2 - 16*B^2*b^9*z^2 + 384*B^2*C*a^2*b^4*c*z - 1024*A*B^2*a^3*b*c^3*z - 192*A*B^2*a*b^5*c*z - 1536*B^2*C*a^3*
b^2*c^2*z + 768*A*B^2*a^2*b^3*c^2*z - 32*B^2*C*a*b^6*z + 2048*B^2*C*a^4*c^3*z + 16*A*B^2*b^7*z + 192*A*B^2*C*a
^2*b^2*c + 512*A*C^3*a^3*b*c + 128*A^3*C*a*b^3*c + 16*A*B^2*C*a*b^4 - 384*A^2*C^2*a^2*b^2*c - 192*B^2*C^2*a^3*
b*c - 48*A^2*B^2*a*b^3*c - 24*B^4*a^2*b^2*c - 16*B^2*C^2*a^2*b^3 - 16*B^4*a^3*c^2 - 4*A^2*B^2*b^5 - 256*C^4*a^
4*c - 16*A^4*b^4*c - 9*B^4*a*b^4, z, k)*x*(32*b^9*c^2 - 512*a*b^7*c^3 + 8192*a^4*b*c^6 + 3072*a^2*b^5*c^4 - 81
92*a^3*b^3*c^5))/(4*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c))) + (x*(8*A^2*b^5*c^2 - 2*B^2*b^6*c + 64*
B^2*a^3*c^4 + 32*C^2*a^2*b^3*c^2 - 32*A^2*a*b^3*c^3 + 4*B^2*a*b^4*c^2 - 128*C^2*a^3*b*c^3 + 128*A*C*a^2*b^2*c^
3 - 32*A*C*a*b^4*c^2))/(4*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c))) - (3*B^3*a*b^3*c + 32*B*C^2*a^3*c
^2 + 4*B^3*a^2*b*c^2 + 8*A^2*B*a*b^2*c^2 - 32*A*B*C*a^2*b*c^2)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^
4*c)) + (x*(4*A^3*b^3*c^2 - 32*C^3*a^3*c^2 + A*B^2*b^4*c + 4*A*B^2*a*b^2*c^2 + 48*A*C^2*a^2*b*c^2 - 24*A^2*C*a
*b^2*c^2 - 8*B^2*C*a^2*b*c^2 - 2*B^2*C*a*b^3*c))/(4*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)))*root(15
72864*a^5*b^2*c^6*z^4 - 983040*a^4*b^4*c^5*z^4 + 327680*a^3*b^6*c^4*z^4 - 61440*a^2*b^8*c^3*z^4 + 6144*a*b^10*
c^2*z^4 - 1048576*a^6*c^7*z^4 - 256*b^12*c*z^4 + 32768*A*C*a^4*b*c^4*z^2 - 512*A*C*a*b^7*c*z^2 - 24576*A*C*a^3
*b^3*c^3*z^2 + 6144*A*C*a^2*b^5*c^2*z^2 + 512*C^2*a^2*b^6*c*z^2 + 12288*B^2*a^4*b*c^4*z^2 - 1536*A^2*a*b^6*c^2
*z^2 + 24576*C^2*a^4*b^2*c^3*z^2 - 6144*C^2*a^3*b^4*c^2*z^2 - 8192*B^2*a^3*b^3*c^3*z^2 + 1536*B^2*a^2*b^5*c^2*
z^2 - 8192*A^2*a^3*b^2*c^4*z^2 + 6144*A^2*a^2*b^4*c^3*z^2 + 128*A^2*b^8*c*z^2 - 32768*C^2*a^5*c^4*z^2 - 16*B^2
*b^9*z^2 + 384*B^2*C*a^2*b^4*c*z - 1024*A*B^2*a^3*b*c^3*z - 192*A*B^2*a*b^5*c*z - 1536*B^2*C*a^3*b^2*c^2*z + 7
68*A*B^2*a^2*b^3*c^2*z - 32*B^2*C*a*b^6*z + 2048*B^2*C*a^4*c^3*z + 16*A*B^2*b^7*z + 192*A*B^2*C*a^2*b^2*c + 51
2*A*C^3*a^3*b*c + 128*A^3*C*a*b^3*c + 16*A*B^2*C*a*b^4 - 384*A^2*C^2*a^2*b^2*c - 192*B^2*C^2*a^3*b*c - 48*A^2*
B^2*a*b^3*c - 24*B^4*a^2*b^2*c - 16*B^2*C^2*a^2*b^3 - 16*B^4*a^3*c^2 - 4*A^2*B^2*b^5 - 256*C^4*a^4*c - 16*A^4*
b^4*c - 9*B^4*a*b^4, z, k), k, 1, 4) - ((B*a*x)/(4*a*c - b^2) + (x^2*(A*b*c - C*b^2 + 2*C*a*c))/(2*c*(4*a*c -
b^2)) + (B*b*x^3)/(2*(4*a*c - b^2)) + (a*(2*A*c - C*b))/(2*c*(4*a*c - b^2)))/(a + b*x^2 + c*x^4)